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Chapter 1

Ramsey’s Theorem

1.1. Ramsey’s Theorem for graphs

Definition 1. A graph G =(V ,E) is a set V of points, called vertices, and a set E of
distinct pairs of vertices, called edges.

Definition 2. A subgraph G' = (V',E’) of a graph G = (V,E) is a graph such that
V'eVand E'cE.

Figure 1.1 below depicts a graph G with four vertices V = {V71,V2,V3,V4} and
four edges E = {e1,e3,e3,e4}, where e; = {V1,V3}, eg = {V5,V3}, eg = {V3,V4}, and
e4 = {Va,V4}. Note that edges are unordered pairs of vertices, meaning that {V7,Vs}
and {Vy,V;} refer to the same edge. Next to it is a graph G' = (V/,E’) with V' =
V ={V1,V5,V3,V4} and E' = {e1,es}. Since V' cV and E’' cE, we deduce that G’ is a
subgraph of G.
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Figure 1.1: A graph G and one of its subgraphs G'.
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Definition 3. Given n € N, a complete graph on n vertices, denoted by K,,, is a graph
with n vertices and the property that every pair of distinct vertices is connected by
an edge.
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Figure 1.2: A depiction of K, for n =2,3,4,5, and 6.

Definition 4. An edge-coloring of a graph G =(V,E) is an assignment of a color to
each edge of the graph. A graph that has been edge-colored is called monochromatic
if all of its edges are the same color.

An edge-coloring of a graph can also be viewed as a function where the domain
is the set of edges of the graph and the codomain is the set of colors. For example,
suppose one has a graph with edges E ={e1,e2,e3} and a set of colors C = {red, blue}.
A valid coloring of this graph can be seen as a function y: E — C, where, for instance,
1(e1) =red, y(e2) =blue, and y(e3) =red.

Ramsey’s Theorem for graphs. For any n,m € N there exists R = R(n,m) € N
such that any edge-coloring of Kr with at most m colors contains a monochromatic
copy of K, as a subgraph.

Let us illustrate the content of Ramsey’s Theorem for graphs by looking at
an example. If the edge-coloring consists only of two colors, say red and blue,
and we assume n = 3, then Ramsey’s Theorem asserts that there exists a number
R(3,2) such that any edge-coloring of a complete graph on R(3,2) vertices admits a
monochromatic triangle. Note that R(3,2) cannot equal 5, because Figure 1.3 below
shows a 2-coloring of K5 containing no monochromatic triangle. However, taking

Figure 1.3: An edge-coloring of K5 containing no monochromatic copy of K3.



R(3,2) = 6 already works. Indeed, through some trial-and-error, one quickly realizes
that it is impossible to find an edge-coloring of K¢ using only 2 colors that avoids
monochromatic triangles. For instance, Figure 1.4 below shows a complete graph
on 6 vertices where all but one edge have been colored either red or blue. As can
be seen from the picture, it is impossible to complete the coloring without creating
either a red or a blue triangle.

Figure 1.4: An almost-complete edge-coloring of K¢ that cannot be completed without
creating a monochromatic copy of K3. This example illustrates that it is impossible
to color K¢ using two colors without producing a monochromatic copy of K.

The best possible value for R(n,m) is called the Ramsey number for (n,m). Below
is a list of Ramsey numbers known to date:

(n,m) | Ramsey Number
(3,2) 6

(4,2) 18

3,3) 17

(3,4) 30

(5,2) unknown
3,5) unknown
4,3) unknown

1.2. Ramsey’s Theorem for 2-sets

Definition 5. A 2-set is a set consisting of exactly two elements. Given a set X, a
2-subset of X is any subset of X that is a 2-set. We will use X® to denote the set of
all 2-subsets of X.

We have already seen examples of 2-subsets in the previous section. Indeed, the
set of edges E of a graph G = (V,E) consists of 2-subsets of the set of vertices V. In
other words, E c V. Note that a graph G = (V,E) is a complete graph if and only if
E=V®,
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Definition 6. Let X be a set. A coloring of X is an assignment of a color to each
2-subset of X. We call X® monochromatic if all elements in X® have the same
color.

The following can be viewed as an “infinitary” version of Ramsey’s Theorem for
graphs.

Ramsey’s Theorem for 2-sets. Let X be an infinite set. Then for any finite coloring
of X®@ there exists an infinite subset Y € X such that Y® is monochromatic.

Proof. Fix an arbitrary element x; € X and note that any 2-set of the form {x1,x}
for x € X\{x1} has a certain color. Since the number of colors is finite but the set
X \{x1} is infinite, there exists an infinite subset X7 € X \{x1} such that all 2-sets of
the form {x1,x} for x € X7 have the same color. Now fix an arbitrary element x3 € X
and let us repeat the same procedure. Any 2-set of the form {x2,x} for x € X1 \{x2}
has a certain color. For the same reason as before, since the number of colors is finite
but the set X1\{x9} is infinite, there exists an infinite subset X9 < X1\{x1} such all
2-sets of the form {x9,x} for x € X2 have the same color. Continuing this procedure
produces an infinite sequence of distinct elements x1,x2,x3,... and a nested family
of infinite sets X 2 X; 2 X9 2 X3 2... such that for all i € N we have x;.1 € X; and
the set {{x;,x} : x € X;} is monochromatic.

Let ¢; denote the color of elements in the set {{x;,x}: x € X;}. Then c1,c9,c3,... is
an infinite sequence of colors. Since there are only finitely many different colors, one
color must appear infinitely often in this sequence. In other words, there exists a
color ¢ and an infinite sequence i1 <iz <i3<...€Nsuch that ¢;, =c for all 2 eN.

To finish the proof, define Y = {x;, : # € N} and observe that any 2-subset of Y is of
the form {x;,,x;,} for £ < ¢ eN. Since x;, € X;,_1 and X;,_1 € X;,, the 2-set {x;,,x;,}
has the color ¢. Hence all 2-subsets of Y have the color ¢, which proves that Y@ is
monochromatic. O

Proposition 7. Ramsey’s Theorem for 2-sets implies Ramsey’s Theorem for graphs.

Proof. We shall prove the contrapositive. Suppose V1, Vs,... is an infinite sequence
of distinct vertices and let Kr denote the complete graph on the vertices V1,...,Vz.
If Ramsey’s Theorem for graphs is false then for some n,m € N and every R €
N there exists an edge-coloring yr: {(Vi,...,Vg}® — {1,...,m} of Kz admitting no
monochromatic copy of K.

If s <R then any edge-coloring of Kr induces an edge-coloring of K, because
K, is a subgraph of Kz. In particular, we can restrict yr to K; and obtain an edge-
coloring of K with at most m colors admitting no monochromatic copy of K,,. Let us
denote this restriction of yg to K; by xr s.

Set 21 = N. Consider the sequence of colors (yr 2)re%,, all of which are edge-
colorings of K3. Since there are only finitely many possibilities of coloring the edges
of K9 with m colors and 2 is infinite, there exists an infinite subset Z3 = %1 such
that (Y 2)re, all yield the same edge-coloring of K. Next, we can repeat the same



argument with 23 in place of #Z; and yg 3 in place of yr 2. Indeed, since there
are only finitely many possibilities of coloring the edges of K3 with m colors and
(xr,3)rRe%, is an infinite sequence of edge-colorings of K3, there exists an infinite
subset Z£3 © %2 such that all colorings in (yr 3)re%, are identical. By continuing
this procedure we end up with an infinite family of nested sets 21 2 %Z22%32...
such that all edge-colorings in {yr s : R € %} are identical. In other words, for all
R1,R9 € Z; and all distinct i, € {1,...,s} the edge {V;,V;} has the same color with
respect to Yz, and xg,.

Next define a finite coloring of N® by assigning to each 2-subset {i, j} € N® the
same color as the edge {V;,V;} under the coloring xr, where R is any element in %;
and s is any number bigger than both i and j. Due to our construction, the choice of
the color does not depend on which R € Z; or which s bigger than i and j we choose.
To finish the proof, note that with this coloring of N® there does not exist a subset
Y =N with |Y| > n and such that Y® is monochormatic, because the existence of
such a set would imply the existence of a monochromatic copy of K, with respect
to the coloring yr for sufficiently large R, which we know is not possible. This also
means that there exists no infinite subset Y <N such that Y? is monochormatic,
thus contradicting Ramsey’s Theorem for 2-sets.

O
1.3. Schur’s Theorem
Fermat’s Last Theorem states that for m > 3 the equation
"+ y"=2" (1.8.1)

has no positive integer solutions x,y,z € N. For centuries, this remained one of the
biggest open problems in mathematics, and one whose intriguing nature captivated
many mathematicians. Among them was also Issai Schur, who investigated a
natural, localized version of Fermat’s Last Theorem. More precisely, he wondered
whether for any m > 2 the congruence equation

2" +y™=2" (mod p) (1.3.2)

possesses non-trivial solutions for all but finitely many primes p. Note that any non-
trivial solution to Fermat’s equation x™ + y™ = 2™ also offers a non-trivial solution
to Schur’s equation x™ + y™ = 2z™ (mod p) for all primes p satisfying p > 2™, but not
the other way around. In order to address (1.3.2), Schur proved a theorem that is
often regarded as the earliest result in Ramsey Theory:

Schur’s Theorem ([Sch17]). For any m € N there exists S = S(m) € N such that if
the set {1,2,...,S} is colored using at most m colors then there exist monochromatic
x,y,2€{1,2,...,S} withx+y==z.
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Proof. Take S =R(3,m), where R(3,m) is the Ramsey number for (3,m). Let Kg de-
note the complete graph on S vertices and denote the vertices of Kg by V1,Vs,...,Vs.
Any coloring of the set {1,2,...,S} induces an edge-coloring on Kg by assigning to
each edge {V;,V;} the color of the number [i - j| €{1,2,...,8}. According to Ramsey’s
Theorem for graphs, Kg contains a monochromatic triangle. Let V,, V3, and V., for
a < b < c, be the vertices of this monochromatic triangle. By setting

x=b-a, y=c-b, and z=c—a,
it is then easy to check that x,y,z have the same color and satisfy x + y = z. O
The smallest possible positive integer S(m) for which the conclusion of Schur’s

Theorem holds is referred to as the Schur number for m. The known Schur numbers
to date are:

Schur Number
5
14
45
161
unknown
unknown

<N ooy x| S

Here is an example from Schur’s original paper [Sch17] of a 3-coloring of {1,2,...,13}
admitting no monochromatic solution to the equation x + y = z:

color 1: {2,3,11,12}
color 2: {5,6,8,9}
color 3: {1,4,7,10,13}

More examples along these lines can be found here: https://oeis.org/A030126.

The proof that the Schur number for 5-colorings equals 161 took up 2 petabytes of
space. Even though every 5-coloring of {1,...,161} admits a monochromatic solution
to x + y = z, there are 2447113088 many 5-colorings of {1,...,160} admitting no
monochromatic solution to x + y = z.

With the help of the above theorem, Schur was able to show that, contrary to
Fermat’s equation (1.3.1), its “local” counterpart (1.3.2) does possess non-trivial
solutions.

Theorem 8. Let m € N. There exists F = F(m) such that for all prime numbers
p > F there exist x,y,z€{1,2,...,p—1} with x™ + y™ =2 (mod p).

For the proof of Theorem 8, we will need the following basic fact from algebra,
the proof of which is left to the interested reader.


https://oeis.org/A030126

Lemma 9. Let (K,+,-) be a field and f(x) € K[x] a polynomial of degree deg(f)=m
with coefficients in K. Then the number of roots of f(x) is at most m.

Let us now see the proof of Theorem 8.

Proof of Theorem 8. Take F = S(m), where S(m) is as guaranteed by Schur’s The-
orem. Let p be any prime number bigger than F. The set [, ={0,1,...,p —1} of
congruence classes modulo p naturally forms a field (Fp, +,) under the modular
arithmetic operations + and -. Let F, =F,\{0} and consider the set

C={x":x€ [F;}.

Note that C is a subgroup of the multiplicative group (F,,-). This means that F
can be covered by cosets of C. More precisely, there exist coset representatives
£1,82,-..,8r €[, such that

F,=81Cug2Cu...ug,C. (1.3.3)

It follows from Lemma 9 that for any y € F, the equation x™ = y (mod p) has at
most m solutions, because the polynomial x™ — y can have no more than m roots.
So any y € F, admits at most m representation of the form x™, which implies that
that m|C| > ”F;;l' It follows that C can have at most m cosets, or in other words,
r <m. Since p > F, the set {1,...,F} is a subset of IF; =1{1,2,...,p — 1} and hence
(1.3.3) yields a partition of the set {1,...,F} involving r disjoint cells. We can think
of this partition as a coloring of {1,...,F} using r colors. Since F =S(m) and r <m,
it follows from Schur’s Theorem that there exist monochromatic %,5,% € {1,2,...,F}
for which % + y = 2. Since %,%,Z have the same color, they all belong to the same
coset. In other words, there exists a coset representative g; € {g1,...,&-} such that
%,¥,2 € g;C. Take any x,y,2z € F, for which

LM

x=g;x™ (mod p), y=giy™ (mod p), and Z=g;2" (mod p),

which is possible because %, y,Z € g;C. Then we have
gix" +giy" =g;z™ (mod p),
from which it follows that

m

xm+y™

=z" (mod p),

because g; #0 (mod p). O

1.4. Ramsey’s Theorem for k-sets

Definition 10. A k-set is a set consisting of exactly £ elements. Given a set X, a
k-subset of X is any subset of X that is a k-set. We will use X® to denote the set of
all k-subsets of X.
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We have already seen Ramsey’s Theorem for 2-sets. Here is Ramsey’s result in
full generality.

Ramsey’s Theorem for k-sets ((Ram30]). Let X be an infinite set and k > 2. Then
for any finite coloring of X®) there exists an infinite subset Y < X such that Y® is
monochromatic.

Proof. Let us use a proof by induction on k. The base case of the induction, when
k = 2, follows from Ramsey’s Theorem for 2-sets established in Section 1.2. To
prove the inductive step, assume 2 > 3 and Ramsey’s Theorem has already been
proven for (k —1)-sets. Let Yo = X and fix an arbitrary element y; € Yy. Note
that any k-set of the form {y1,x2,...,x3} for {x2,...,xz} € ¥o\{y1D*~D has a certain
color, which induces a finite coloring on (Yp\{y1})*~D. Applying Ramsey’s Theorem
for (k — 1)-sets, we can find an infinite subset Y7 € Y \{y1} such that all k-sets
of the form {yq,x2,...,x3} for {xo,...,x3} € Yl(k_l) are monochromatic. Next, fix an
arbitrary element y2 € Y1 and repeat the same procedure. The given coloring of k-sets
of the form {y,%s,...,x3} for {xa,...,x} € (Y1\{y2)*~D induces a finite coloring of
(Y1 \{y2})*~D_ Applying Ramsey’s Theorem for (¥ —1)-sets once more yields an infinite
subset Y2 € Y7 \{y2} such that all k-sets of the form {yg,x9,...,xz} for {xg,...,x2} €
Yz(k ~1 are monochromatic. Continuing this procedure produces an infinite sequence
of distinct elements y1,y2,y3,... and a nested family of infinite sets X =Yy2Y;1 2
Y2 2Y32... such that for all i € N the set {{y;,x2,...,%z} : {x2,...,x2} € Yi(k_l)} is
monochromatic. Moreover, we have y;,1 €Y; for all i e N.

Let c¢; denote the color of elements in the set {{y;,x2,...,25} : {xo,...,x3} € Yi(k —by,
Since the sequence c1,c2,c3,... is infinite but the number of colors is finite, one color
must appear infinitely often in c1,c2,cs,.... In other words, there exists a color ¢
and an infinite subsequence ¢; ,c;,,c;;,... € N such that ¢;, = ¢ for all £ € N. To finish
the proof, define Y ={y;, : £ € N} and observe that any k-subset of Y is of the form
{yill,...,yilk} for /1 <...< /¥ €N. Since {y,-lz,...,yit,k} €Y,-l,1 because /1< ¥l3<...<¥p,
the k-set {y; tpreeeadi l’k} has the color c. Hence all k-subsets of Y have the color c,

which proves that Y*) is monochromatic. O

1.5. The compactness principle

Compactness Principle for finite colorings. Let Y be an infinite set, let m € N,
and let & be a collection of finite subsets of Y. The following are equivalent:
(1) For any coloring of Y using no more than m colors there exists A € & such
that all elements in A have the same color.
(ii) There exists a finite set Z €Y such that for any finite coloring of Z using no
more than m colors there exists A € & with A € Z and such that all elements
in A have the same color.
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Proof. The implication (ii) = (i) is immediate, so it only remains to prove (i) = (ii).
We can view a coloring of Y that uses no more than m colors as a function y: Y —
{1,...,m} simply by associating a number from 1 to m with each color. This means
the space of all possible colorings of Y can be identified with the product space
{1,...,m}¥. Note that the finite set {1,...,m}, endowed with the discrete topology, is
a compact Hausdorff space. By Tychonoff’s theorem, {1,...,m}¥ endowed with the
product topology is therefore also a compact Hausdorff space.

For any finite non-empty set Z €Y let 67 be the set of all colorings in {1,...,m}¥
for which there is monochromatic A € & with A € Z. Then %7 is an open set in the
product topology on {1,...,m}¥ . Moreover, in light of statement(i), we have

U <¢z=1,....m}".

ZcY
0<|Z|<o0

By compactness, it follows that there is some finite non-empty set Z Y such that
6z =11,...,m}Y, completing the proof. O

1.6. Ramsey’s Theorem for hypergraphs

A hypergraph is a generalization of a graph in which an edge can join multiple
vertices at once.

Definition 11. Let £ € N. A k-uniform hypergraph is a pair G =(V,E) where V is a
set of points, called vertices, and E < V*) is a set of k-subsets of V, called hyperedges.

Given k,n € N with & < n, a complete k-uniform hypergraph on n vertices is a
k-uniform hypergraph G = (V,E) where the set of vertices has cardinality n and
where every set of & distinct vertices in V is connected by an edge. In other words,
G =(V,E) is a complete k-uniform hypergraph on n vertices if [V|=n and E = V®),

Ramsey’s Theorem for hypergraphs. For any n,m,k € N there exists a number
R =Ry(n,m) e N such that any edge-coloring of a complete k-uniform hypergraph
on R vertices with at most m colors admits a monochromatic copy of a complete
k-uniform hypergraph on n vertices.

Proof. Let n,m,k € N be given. If follows from Ramsey’s Theorem for k-sets that
for any m-coloring of N® there exists a set S <N with |S| = n such that S® is
monochromatic. If we now apply the Compactness Principle for finite colorings to
this statement (with Y = N® and & ={S® : S c N, |S|=n}), it follows that there
exists some integer R = R;(n,m) such that for any m-coloring of {1,... ,R}® exists
a set S c{1,...,R} with |S| = n such that S® is monochromatic. But note that
{1,...,R}® can be identified with a complete k-uniform hypergraph on R vertices,
and S® with a complete k-uniform hypergraph on n vertices. This finishes the
proof. O
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Figure 1.5: Here is an example of a 3-uniform hypergraph with vertices V =
{7,13,17,23,53,73,97,103,137,193}, where three vertices are connected by a hy-
peredge if and only if their squares form a 3-term arithmetic progression. For
example, {7,13,17} is an edge, because 72,132,172 are in an arithmetic progression.

1.7. Erdos-Szekeres’ Theorem on convex
polygons

Definition 12. A non-empty set C < R? is called convex if for any ¥,5 € C and
A€[0,1]one has AXx+(1-A)yeC.

The point AX+(1—A)y is usually referred to as a convex combination of the points
X and y. Moreover, the set {1x+(1—A)y: A €[0,1]} is nothing more than an algebraic
description for the line segment joining X and .

Figure 1.6: A convex polygon (left) and a non-convex polygon (right).

Definition 13. The convex hull of a non-empty set K < R? is the smallest convex set
that contains K.
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Since the intersection of convex sets is again a convex set, it follows that the
convex hull of K equals the intersection of all convex sets that contain K. The convex
hull can also be described algebraically as the set of all finite convex combinations
of elements in the set. More precisely, if K is a subset of R? and we use conv(K) to
denote its convex hull, then

conv(K)={w1Z1+...+wypzZ¢: €N, Z1,...,Z0€ K, wy,...,wp€[0,1], wi+...+we =1}

1.7.1)

Mind that the convex hull of K should not be confused with the closed convex

hull of K, which is defined as the smallest closed convex set that contains K, and is
usually denoted by conv(K) instead of conv(K).

Definition 14. A non-empty set of points K < R? is said to be in convex position if
no point ¥ € K belongs to the convex hull of K\ {x}.

For example, a finite set K < R? is in convex position if and only if its elements
are the corners of a convex polygon.

Definition 15. A set K < R?2 is called discrete if it has no accumulation points.

Erdos-Szekeres’ Theorem on points in convex position. Let K be an infinite
discrete set of points in R2. Then either there is an infinite subset of K whose points
lie on a straight line or there is an infinite subset of K whose points are in convex
position.

For the proof of Erdos-Szekeres’ Theorem on points in convex position we will
need the following classical result from convex geometry.

Carathéodory’s theorem. Let K < R? with |K| > 4 be given. Then K is in convex
position if and only if any four distinct points from K form a convex quadrilateral.

Proof. Clearly, if K is in convex position then any quadrilateral formed using points
from K is convex. To prove the converse, we will show that if K is not in convex
position then there exist four points in K such that one of these points lies within
the triangle spanned by the others.

Suppose K is not in convex position. Then there exists a point ¥ € K lying in the
convex hull of K’ = K\{x}. In light of (1.7.1), this means that we can write ¥ as

X=wiZ1+...tweZy, 1.7.2)

where Z1,...,Z0€ K' and w1,...,w, €[0,1] with w1 +...+w, = 1. Note that we can
assume without loss of generality that Z1,...,Z, are in convex position. Indeed, if
for example Z, belongs to the convex hull of Z1,...,Z/—1 then we can express Z, as
a convex combination of Z1,...,Zy_1 and substitute this representation in (1.7.2),
allowing us to represent X as a convex combination of Z1,...,2¢_1 instead of Z1,...,Z,.
Thus, invoking induction on ¢, we may assume that Z;,...,Z, are in convex position.
This implies that Z1,...,Z, form the corners of a convex polygon. Since X lies inside
this polygon and since convex polygons decompose into triangles (as illustrated in
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Figure 1.7: A convex polygon divided into triangles.

Figure 1.7), there exists i <j <k €{1,...,#} such that X lies in the triangle spanned
by Z;,Z;,2s, finishing the proof. O

Proof of Erdés-Szekeres’ Theorem on points in convex position. Let K < R? be infi-
nite. We begin by coloring K® by assigning the color red to {%,7,2} € K® if the
points X,¥,Z are collinear and the color blue otherwise. According to Ramsey’s The-
orem for k-sets, there exists an infinite set L < K such that all 3-sets in L® have
the same color. If this color is red, then any three distinct points in L are collinear.
This can only happen if all the points in L lie on a straight line, in which case we are
done.

It remains to deal with the case when all elements in L® are blue, i.e., when
no three points in L are collinear. In this situation, we need to apply Ramsey’s
Theorem one more time. Note that L is a discrete set. This implies that for any
three points %, 5,z € L the triangle AXyZ contains only finitely many points from
L. Color all elements in L® by assigning the color red to the 3-set {%, 7,2} € L® if
the triangle AXyZ contains an even number of points from L, and the color blue
otherwise. By Ramsey’s Theorem for k-sets there exists an infinite set C < L such
that C® is monochromatic. We claim that C is in convex position. Indeed, if C
were not in convex position then, in view of Carathéodory’s theorem, there exist
four points w,%,y,Z € C such that & lies inside the triangle Ao = AXyZ. Note that Ag
splits into three smaller triangles, A1 = AwWyZ, Ag = AiwxZ, and Ag = AwXYy, as seen
in Figure 1.8. For i =0,1,2,3 let #A; denote the number of points from L inside the

‘Nl

1
<
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triangle A;. Since no three points from L are collinear, there are no points on the
boundary of any of these triangles aside from their corners. This means that the
number of points from L inside A equals the combined number of points inside the
three smaller triangles plus the point @, or in other words,

#Ag =#A1+#Ag +#A3+1. (1.7.3)

Recall that C® is monochromatic. If all elements in C® are red then the quantities
#Ao, #A1, #A2, and #A3 are even numbers. This would imply that the left hand
side of (1.7.3) is an even number whereas the right hand side is an odd number, a
contradiction. Similarly, if all elements in C® are blue then #Aq, #A1, #Ag, #A3 are
odd numbers, implying that the left hand side of (1.7.3) is odd whereas the right
hand side is even. Either way, we have obtained a contradiction, which means that
C is in convex position. O

The following is a big open conjecture at the interface of convex geometry and
Ramsey theory, posed by Erdés and Szekeres in 1960.

Conjecture (Erdés-Szekeres convex polygon problem). Letn > 3. Any set of 2" 2+1
points in the plane, no three of which are collinear, contains a subset of n points in
convex position.

1.8. Erdos-Szekeres’ Theorem on monotone
paths

Erdés-Szekeres’ Theorem on monotone paths. Fix n,m € N. Any sequence
of distinct real numbers of length at least nm + 1 admits either a monotonically
increasing subsequence of length n + 1 or a monotonically decreasing subsequence of
length m + 1.

Proof. Let x1,x9,...,%nm+1 be a sequence of real numbers of length nm + 1. Label
each element x; in the sequence with the pair (a;,b;), where a; is the length of the
longest monotonically increasing subsequence ending with x; and b; is the length of
the longest monotonically decreasing subsequence ending with x;. Note that any two
elements in the sequence are labeled with a different pair: if i < j and x; <x; then
a; <aj, and on the other hand if x; > x; then b; <b;. Ifa; <n and b; <m for all ;
then there are only nm possible labels, contradicting the fact that there are nm + 1
elements in the sequence each with a unique label. It follows that either a; >n or
b; > m for some i, yielding either an increasing sequence of length at least n+ 1 or a
decreasing sequence of length at least m + 1. O
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